Design and Characterization of a 3D-Printed Attitude Control Thruster for an Interplanetary 6U CubeSat

نویسندگان

  • Terry Stevenson
  • Glenn Lightsey
چکیده

This paper describes the design and testing of a miniature, 3D-printed cold gas attitude control thruster for the NASA Ames Research Center BioSentinel mission, an interplanetary small spacecraft that will be launched on the EM-1 flight of SLS. Earth-orbiting small satellites typically use magnetic torque rods for momentum unloading, but these cannot be employed in interplanetary space due to the lack of a strong external magnetic field. ACS thrusters can be used to unload reaction wheels or used directly for attitude control, regardless of the external environment. By 3D printing the propellant tanks, pipes, and nozzles into a single component, the complexity and cost of the thruster are reduced. The use of 3D printing also allows the thruster to better utilize its allocated volume to store more propellant. This is especially important for strictly volume-constrained spacecraft, such as CubeSats. The thruster has seven nozzles that are printed directly into the surface of the structure. The BioSentinel thruster has been tested at the Georgia Institute of Technology by the Space Systems Design Lab. The thrust of each nozzle has been measured to be approximately 50 milliNewtons, with a specific impulse of approximately 31 seconds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques

In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...

متن کامل

Preliminary Design of Spacecraft Attitude Control with Pulse-Width Pulse-Frequency Modulator for Rest-to-Rest Maneuvers

In this paper, the preferred region of design parameters for quasi-normalized equations of single-axis attitude control of rigid spacecraft using pulse-width pulse-frequency modulator (PWPFM) is presented for rest-to-rest maneuvers. Using the quasi-normalized equations for attitude control reduces the system parameters, that is, the moment of inertia, the filter gain, and the maximum torque of ...

متن کامل

Application for RSO Automated Proximity Analysis and IMAging (ARAPAIMA): Development of a Nanosat-based Space Situational Awareness Mission

ARAPAIMA is a proximity operations mission sponsored by the US Air Force Office of Scientific Research (AFOSR) and the Air Force Research Laboratory (AFRL), to perform the in-orbit demonstration of autonomous proximity operations for visible, infrared, and point cloud generation of resident space objects (RSOs) from a nanosat platform. The nanosat is of the 6U CubeSat class, with overall dimens...

متن کامل

Pulsed Plasma Thrusters for Small Satellites

Since the Russian launch of the Zond-2 satellite in 1964 there have been over fifty years of research dedicated to the understanding of the first electric propulsion device to be flown in space, the Pulsed Plasma Thruster. The Pulsed Plasma Thruster originates from the evolution of the vacuum arc switch, but due to its microsecond operation time, the internal dynamics and nature of operation ha...

متن کامل

Volumetrically Efficient Cold Gas Cubesat Propulsion

Recent interest in cube satellites over the last few years has created related interest in propulsion for small satellites. Cubesats, more than other satellites, are volume and power constrained, which pose significant challenges for implementation of cubesat propulsion systems. R-134a propellant systems can provide low cost and efficient propulsion for small impulse maneuvers, orbital maintena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016